M ar 2 00 5 RANDOM WALKS IN A DIRICHLET ENVIRONMENT
نویسندگان
چکیده
This paper states a law of large numbers for a random walk in a random iid environment on Z d , where the environment follows some Dirichlet distribution. Moreover, we give explicit bounds for the asymptotic velocity of the process and also an asymptotic expansion of this velocity at low disorder.
منابع مشابه
ar X iv : m at h / 07 02 10 0 v 1 [ m at h . PR ] 5 F eb 2 00 7 RANDOM WALK IN MARKOVIAN ENVIROMENT
We prove a quenched central limit theorem for random walks with bounded increments in a randomly evolving environment on Z d. We assume that the transition probabilities of the walk depend not too strongly on the environment and that the evolution of the environment is Markovian with strong spatial and temporal mixing properties.
متن کاملar X iv : 0 81 0 . 26 81 v 1 [ m at h . PR ] 1 5 O ct 2 00 8 FROM RANDOM WALKS TO ROUGH PATHS
Donsker's invariance principle is shown to hold for random walks in rough path topology. As application, we obtain Donsker-type weak limit theorems for stochastic integrals and differential equations.
متن کاملReversed Dirichlet environment and directional transience of random walks in Dirichlet environment
We consider random walks in a random environment given by i.i.d. Dirichlet distributions at each vertex of Zd or, equivalently, oriented edge reinforced random walks on Zd . The parameters of the distribution are a 2d-uplet of positive real numbers indexed by the unit vectors of Zd . We prove that, as soon as these weights are nonsymmetric, the random walk is transient in a direction (i.e., it ...
متن کاملM ar 2 00 7 RANDOM MATRICES , NON - BACKTRACKING WALKS , AND ORTHOGONAL POLYNOMIALS
Several well-known results from the random matrix theory, such as Wigner’s law and the Marchenko–Pastur law, can be interpreted (and proved) in terms of non-backtracking walks on a certain graph. Orthogonal polynomials with respect to the limiting spectral measure play a rôle in this approach.
متن کاملar X iv : 1 00 9 . 43 58 v 2 [ co nd - m at . s of t ] 2 5 Se p 20 10 Shape anisotropy of polymers in disordered environment
We study the influence of structural obstacles in a disordered environment on the size and shape characteristics of long flexible polymer macromolecules. We use the model of self-avoiding random walks on diluted regular lattices at the percolation threshold in space dimensions d = 2, 3. Applying the Pruned-Enriched Rosenbluth Method (PERM), we numerically estimate rotationally invariant univers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005